Sample Size

- The moment of truth
- Where the rubber hits the pavement

Hermetic Decalogue

... Thou shalt not sit

With statisticians...

WH Auden, 1949±2

QoL in Trial of Brain Metastases

- Endpoint: FACT-Br
 - o Mean = 50
 - o SD = 10

The raw ingredients

- What is your question, precisely?
- What is your outcome, precisely?
- Who will be measured?
- Type 1 and Type 2 error rates
- The variability

Difference to be detected

- Clinically important?
- Biologically credible?
- The "I would kick myself" difference

Does time play a role?

- Pattern of recruitment
- Follow-up time
- Hazard over time
- Hazard ratio over time
- Competing risks

QoL Trial

- Primary tumor may be
 - o Lung
 - o Breast
 - o Other
- Brain mets may be anywhere disability depends on size and location
- Drug designed to shrink mets

Operating characteristics

- Type 1 error rate = 0.05 two sided
- Type 2 error rate = 0.90

What is the question, precisely?

- Does the drug improve QoL?
- Does the drug improve outcome on the FACT-Br?

What is the...

- Mean difference in FACT-Br?
 - o Variability: SD=10
- Difference in proportions falling below 30?
 - o Variability is binomial
- "Difference" in time to falling below 30?
 - o Variability: hazard and hazard ratio

Generic Formula

Sample size per group:

$$2\sigma^2 \left(\mathbf{z}_1 + \mathbf{z}_2\right)^2$$

$$\delta^2$$

$$(z_1 + z_2)^2$$

$$\frac{2\sigma^2 \left(\mathbf{z}_1 + \mathbf{z}_2\right)^2}{\delta^2}$$

- A fixed number
- You choose!
- If 0.05 and 0.90, this quantity is about 10
- Kick-yourself power: β =.5 and z_2 =0.
- Subscripts usually: $(1-\alpha)/2$ and $(1-\beta)$

δ^2

$$\frac{2\sigma^2 \left(\mathbf{z}_1 + \mathbf{z}_2\right)^2}{\delta^2}$$

The difference you _____ detect.

- a) want to
- b) believe is clinically meaningful
- c) believe is biologically credible
- d) can afford to

σ^2

- From:
 - o Past data
 - o Assumptions in study
- Very often underestimated!
 - o Past data not directly relevant
 - o Problems in study inflate the variance

δ^2

$$\frac{2\sigma^2 \left(\mathbf{z}_1 + \mathbf{z}_2\right)^2}{\delta^2}$$

The difference you _____ detect.

- a) want to
- b) believe is clinically meaningful
- c) believe is biologically credible
- d) can afford to

2

$$\frac{2\sigma^2 \left(\mathbf{z}_1 + \mathbf{z}_2\right)^2}{\delta^2}$$

- The 2 is per group
- The factor for a two-group study is 4.

$$Var(\overline{x} - \overline{y}) = Var(\overline{x}) + Var(\overline{y})$$
$$= 2Var(\overline{x}) = 2\sigma^{2}/n$$

Case #1: Recruitment and follow-up

- Everyone is recruited at the same time
- No one dies or is lost to follow-up
- Everyone is followed for exactly 1 year

Endpoint: difference in mean

$$\frac{2\sigma^2 \left(\mathbf{z}_1 + \mathbf{z}_2\right)^2}{\delta^2}$$

Assume the mean is normal

$$\sigma$$
=10; δ=10

- Sample size = 2(100)(10)/100 = 20/group
- Doubling the SD or halving the difference quadruples the sample size

Endpoint: proportion falling below 30

- (Proportion falling at least 10 points)
- (Proportion falling at least 20 percent)
- Say we want to compare 50 percent vs. 30 percent:

2(binomial variance)² $(z_1+z_2)^2$

 δ^2

e.g., PASS

PASS: Proportions - Two Samples			×
<u>File Run A</u> nalysi:	s <u>G</u> raphics <u>P</u> ASS	<u>W</u> indow <u>H</u> elp	
		💆 😿 🔀 🎢 📶	ka FREE 📠 🖭 💹
Symbols <u>2</u>	<u>B</u> ackground	Abbre <u>v</u> iations	Te <u>m</u> plate
Plot <u>T</u> ext	A <u>x</u> es	<u>3</u> D	Symbols <u>1</u>
<u>D</u> ata	<u>O</u> ptions	Re <u>p</u> orts	Plot <u>S</u> etup
Find (Solve For):		Alternative Hypothesis: Ha: P1 <> P2	
P1 (Group 1 Proportion):		N1 (Sample Size Group 1):	
.3		50 to 400 by 50	
P2 (Group 2 Proportion): OR		N2 (Sample Size Group 2): Use R ▼	
Alpha (Significance Level):		R (Sample Allocation Ratio):	
.05, .01		1.0	
Beta (1-Power): .1, .2 ▼		☐ Use Arcsine Transformation ☐ Use Continuity Correction	

Binomial answer

- 130 per group
- If only 80 percent power, 100 per group
- If Type 1 error rate is 0.01 and power =
 - o 90% n per group = 185
 - o 80% n per group = 150

Time to falling below 30

- Assume exponential time to failure
- Assume that at 4 months 50% of control and 70% of treatment are still above 30
- Required sample size is 128 per group.

PASS

Minor headaches

- Distribution of the mean not normal
- Population heterogeneous

Major headaches

- Missing data
- Time of follow-up (all three, but problem explicit in time-to-failure)
- Non-exponential failure
- Non-proportional hazards

Missing data

-more next week
- For now:
 - Common approaches
 - **Just Ignore**
 - **Last Observation Carried Forward (LOCF)**
 - Something more complicated
 - o My principle: you should not win because of missing data

Implications for Sample Size

- o You need 100/group and expect 10% missing
- o LOCF people would say: 100
- o Just Ignore people would say: 111
- Lavori's rule of thumb: each missing person= 3 observed

Therefore, your sample size should be 90+3(10)=120

Time: Exponential/non-exponential

- Light bulb model often works well
- All we need to know is person-years of follow-up
- So, 4 people followed 1 year = 1 person followed 4 years

Recruitment: exponential case

- Follow-each person 12 months-recruitment pattern doesn't matter for sample size
- Follow each person until the last recruited has 12 months of follow-up
 - o Persons years of follow-up depends on recruitment patter
 - o The SLOWER the recruitment, the SMALLER the sample size

Non-exponential examples

- Post-CABG surgery:
 - Cognition impaired at first perhaps as consequence of anesthesia
 - Long-term may show slight decline, perhaps consequence of mini-strokes

Non-proportional hazards

- Landmark vs. log-rank time to failure
- E.g., time to diabetes
 - o Control
 - o Diet
 - o Drug
- If we stop at two years, we have no data for four years

Moral

- Don't do sample size calculation in a rush
- Use standard software to help but the big problem is not the calculation, it's gathering the raw materials